
DAC-DP interface module

How to make a strain gauge

What you will need

1. Silhouette cameo

2. Computer with Silhouette studio

3. Silhouette pen holder

4. Electroninks Circuitscribe conductive ink pen

5. Common white printer paper

6. Kapton tape 1’’ wide

7. 30ga Magnet wire

8. 2x1 Female pin header/terminals

9. Conductive Wire glue

10. Strain gauge silhouette file

11. Silhouette grid cut file

Procedure

Make the sensor

1. Plugin the silhouette cameo

2. Place the white printer paper onto the cutting mat aligning the top left corner of the paper with

the top left corner of the cutting mat.

3. Load the cutting mat into the cameo

4. Set the blade height to “1”

5. Load the blade into the cameo and secure in place

6. Open the grid cutting file on the computer in silhouette studio

7. Click “send to silhouette”

8. The cameo will now cut out the strain gauge backing pieces

9. Remove the blade from the cameo

10. Place the pen in the pen holder and tighten the screws to secure the pen in place

11. Place the pen/pen holder into the cameo and secure

12. Open the “strain gauge” file on the computer in silhouette studio

13. Click “send to silhouette”

14. The cameo will now draw the strain gauges

15. Remove the pen holder and clean any residue that it has collected on the pen tip

16. Repeat steps 10-13 to draw a second layer onto the strain gauges. This will ensure that the ink is

properly connected along the trace of the strain gauge.

17. Once it is done, tap the unload button on the cameo.

18. Set the cutting mat and strain gauges off to the side and let the ink dry for at least 30 minutes.

19. Remove the strain gauges - DO NOT try to peel the strain gauges off of the cutting mat, the

more that the strain gauge is bent or curled, the more variation or unreliable the strain gauge

will be. Instead, Slide a long flat blade (pocket knife or razor blade) under each strain gauge to

remove them from the adhesive, keeping the strain gauge as flat as possible

Prepare the wires

20. Cut two lengths of at least 6” of 30ga magnet wire

21. Use a knife to scrape the enamel off of both ends for ¼”

22. Use a crimp tool or pliers to connect a terminal to one end of each wire

23. Place the terminals into the 2 pin connector

24. Place an inch of heatshrink tubing over the pin header/wires

25. Use a heat source to shrink the tubing

26. Flatten the end of the tubing by the wire, this will allow for some flexibility and prevent the

wires from breaking from too sharp of a bend.

27. Use a dab of wire glue to adhere the bare end of each wire to each pad of the strain gauge.

28. Wait at least an hour for the glue to cure

29. Cut a length of kapton tape 1.5” long

30. Place the tape centered over the strain gauge and perpendicular to the direction of the wires,

being certain to align the top and bottom of the strain gauge with the edges of the tape.

31. Wrap the tape around the back of the strain gauge

32. You are done!

Installation instructions

1. Install the DAC-DP software (might need admin privileges)

• At this point there are 2 options, if you have LabVIEW and NI VISA already installed on the

computer, then you can simply run the DAC-DP.exe program from the “Data Acquisition Control

and Display Panel” folder on the disc. (does not require admin)

• If LabVIEW and NI VISA is not installed on the computer you are using, then you will need to

install the program using the setup.exe (requires admin to install)

• If your computer is setup to autorun removable media, then the setup should start when you

insert the disc into the drive, if it does not start by itself, then you will have to open “setup.exe”

from the disc’s root directory.

• Once the setup opens, keep clicking “next” until the DAC-DP setup is complete and the installer

opens up the Arduino setup.

• Continue to step 2.

2. Install the Arduino software/drivers (admin required)

• Install the Arduino IDE. (If you are installing the DAC-DP software using the setup, then

it will automatically start the Arduino installer.)

• Continue through the installation until a pop up appears that will ask if you want to install

the Arduino USB drivers, click install.

• The computer will ask if you want to restart to apply changes, ignore this for now.

• Plug in your board and wait for Windows to begin its driver installation process.

• The computer should recognize the Arduino and assign a COM port to it.

• In the event that windows cannot automatically install the drivers, follow the below

procedure.

• Click on the Start Menu, and open up the Control Panel.

• While in the Control Panel, navigate to System and Security. Next, click on System.

Once the System window is up, open the Device Manager.

• Look under Ports (COM & LPT). You should see an open port named "Arduino UNO

(COMxx)". If there is no COM & LPT section, look under "Other Devices" for

"Unknown Device".

• Right click on the "Arduino UNO (COMxx)" port or “Unknown Device” and choose the

"Update Driver Software" option.

• Next, choose the "Browse my computer for Driver software" option.

• Finally, navigate to and select the driver file named "arduino.inf", located in the

"Drivers" folder of the Arduino Software download (not the "FTDI USB Drivers" sub-

directory). If you are using an old version of the IDE (1.0.3 or older), choose the Uno

driver file named "Arduino UNO.inf"

• Windows will finish up the driver installation from there. “

(Arduino.cc)
3. Upload the code to the Arduino (only need to do once per Arduino)

• Once the computer has installed the Arduino IDE, plug in the Arduino, navigate to the

folder in the DAC-DP installer disc named xloader and open “xloader.exe”

1. For the hex file, click the browse button and navigate to the “Uno_Serial_USB.hex” file

located in the xloader folder.

2. Under device choose “UNO(ATmega328)”.

3. Select the COM port that the computer assigned to the Arduino. If you don’t know what

COM port was assigned, open the “devices and printers” from the start menu, the

Arduino should be listed in de devices with a “(COM#)” in its name.

4. Leave the Baud rate at 115200

5. Click upload.

6. “Uploading” will appear at the bottom of the xloader screen.

7. Once the “uploading” changes to “13622 bytes uploaded” (usually within 30 seconds)

you have successfully set up the Arduino.

Wheatstone bridge Interface instructions

Step 1 - Construct a MEMS Pressure sensor module kit.

 The pressure sensor built in this version will be slightly different than the sensor described in the

MEMS Pressure sensor module kit. The sensor will be built using the same method as described in the

MEMS instructions, but a different design will be used. Start by modifying the stencil to have only one

variable resistor and a break between the variable resistor and the static resistor, like the pictures

below.

Step 2. – Connect the sensor to the interface module

 Use alligator clip leads to attach the Pressure sensor to the Interface module as shown below.

When connecting to the point where the sensor is broken, make sure both points are connected to the

alligator clip.

Step 3 – Start the program

Open the “DAC-DP” program. Click the “Wheatstone Bridge” button in the main screen. “In the Device

settings” use the dropdown menu select the COM port that the computer assigned to the Interface

module. Click the “RUN” button to start the program.

U1

LM741CN

3

2

4
7

6

R3

1kΩ

R1

1kΩ

R2

1kΩ

V1

5V

Rf

1kΩ

GND

R4

5kΩ
Key=A

25 %

VCCVCC

A0

GND

Vref

VR

A simulated wheatstone bridge The basic form of the DAC-DP shield

Step 4 – Acquire results

 Once the program starts to run, you should see a line being graphed with a value of roughly

2.5v. Adjust the frequency to a value that is slow enough that the results do not pass too quickly, but

fast enough that you are able to view the change in pressure, a good start is around 10Hz. Slowly apply

pressure to the center of the sensor. The line on the graph should slowly start to rise. Once you are able

to observe a sufficient increase in value, slowly release the pressure applied to the sensor, the output on

the graph should decrease as the internal pressure is decreased.

Troubleshooting –

1. If the program in unable to recognize the interface module, you may need to update the drivers

manually through the device manager

2. If the program will run, but the sensor’s output on the graph will not change, then double check

your connections.

3. If the line being graphed is extremely high (4-4.5v), then it is likely that your Wheatstone bridge

is unbalanced, use a multimeter to test the resistance of each bridge section. Each section

should be very close in value to every other section, within a %5 difference of each other.

Wheatstone bridge graphing program features

1. Student’s name – allows the student(s) to sign the report that is generated.

2. Serial port – select the correct COM port from the dropdown menu.

3. Frequency Dial – Use the dial to change the number samples per second (frequency) that the

program will graph.

4. Generate report – export all of the data collected, analyzed and curve fit data to an Excel

document. (requires excel to be installed)

5. Graph – The output of the sensor will be graphed in this area.

6. Most recent sample value on graph in decimal form.

7. Graph Scroll bar – Slide scroll bar to view graph history.

8. Take sample – By clicking any button, the program will store and graph the current value in to

corresponding array.

9. Sample Value – displays the numeric value of each sample.

10. Samples Graph – Displays the 10 collected values on graph

11. Curve fit – Displays a Curve fit to match the collected data values.

12. Return to welcome screen – Closes the current window and opens up the welcome screen

where either kit can be selected

Actual size template

Circle has a 3.45” diameter

Cantilever Beam instructions

Step 1 – Attaching the strain gauge.

 For this step you will need the cantilever beam that you are analyzing, one strain gauge, double

sided tape, and packing tape. Start by covering the back of the strain gauge in double sided tape. Place

the strain gauge ≈1.5in away from the end of the cantilever beam. You want the center of the strain

gauge to be between 1 and 1¼ inch away from the edge of the table that you are attaching the

cantilever beam to. Measure and record the resistance value of the strain gauge using a multimeter, you

will need this value later. Continue to attach the cantilever beam to the table as described in the SMCE

MEMS Cantilever Book 2.

Step 2. – Connecting the sensor – requires updated pictures

 Start by obtaining a resistor that is the closest matching value of the strain gauge to complete

the bridge. For example the strain gauge used in this example measures 229.8Ω, so a 220Ω resistor was

used. Insert the fixed value resistor into the DAC-DP Cantilever beam Cable. Connect the 4pin end of the

cable to the DAC-DP interface module being mindful of the orientation, and the other end to the strain

gauge where polarity doesn’t matter.

Step 3 – Software setup

Open the “DAC-DP” program. Click the “Cantilever Beam” button in the main screen. Use the dropdown

menu under “Serial Port” to select the COM port that the computer assigned to the Interface module.

Click the “RUN” button to start the program.

Step 4 – Acquire results

 Once the program starts to run, you should see a line being graphed in the “live data” graph

with a value of roughly 2.5v. Lift the end of the cantilever beam up 8-12 inches and release it. Observe

the live graph and click “Analyze Data” once the readings start to level off. To get a frequency reading,

Use the cursors to select the first 4-5 periods/peaks of the data collected. (optional)Use the cursors to

select the entire duration of the cantilever beam’s motion and click “Generate Report” (requires excel)

for a detailed document that can be further analyzed or saved.

Troubleshooting –

1. If the program in unable to recognize the interface module, you may need to update the drivers

manually through the device manager

2. If the program will run, but the sensor’s output on the graph will not change, then double check

your connections.

Cantilever Beam graphing program features

1. Student’s name – allows the student(s) to sign the report that is generated.

2. Serial port – Select the correct COM port from the dropdown menu before starting the

program.

3. Frequency – Displays the frequency of the analyzed data in hertz.

4. Max pk-pk – displays the greatest difference in voltage measurement.

5. Analyze Collected Data – when clicked, the program will stop collecting data and display the

results.

6. Re-take Data – If you are not satisfied with the data you collected, click this to forget your old

data and start collecting new data.

7. Generate report – export all of the data collected, analyzed and curve fit data to an Excel

document. (requires excel to be already installed)

8. Curve fit – displays an approximate curve to the dampening rate of the cantilever beam.

9. Cursor management – displays stats and allows the user to alter the cursor properties.

10. Live Data – The output of the sensor will be displayed on this graph as it is being collected.

11. Captured Data – Displays all of the readings taken, and allows you to select which data to

analyze using the cursors.

12. Analyzed Data- displays the selected data after going through a filter that removes noise.

13. Cursor 0 – click and drag this cursor to select the starting point to analyze the data.

14. Cursor 1 – click and drag this cursor to select the ending point of the data to analyze.

15. Viewing area tools – use these tools to select the viewing area on each of the graphed if

desired.

16. Return to welcome screen – Closes the current window and opens up the welcome screen

where either kit can be selected.

LabVIEW code
The DAC-DP software is written in LabVIEW, with the MakerHub LINX add-on to interface with the

Arduino. There are many places to learn about LabVIEW coding. Here are a few links that are helpful

when getting started.

• https://www.labviewmakerhub.com/doku.php?id=learn:tutorials:labview:basics

• http://www.ni.com/getting-started/labview-basics/

• https://www.google.com/

Main screen

The main screen allows the program to only need one installer and one shortcut to access both/all

programs that correspond to different SCME kits.

1. Program name and quick start info

2. Software selection – Allows the user to choose which program they want to use.

3. Company info – The logos of the companies who contributed, sponsored, assisted, etc

the development of this kit/software.

Main Screen Code

The whole program is placed inside a loop so that it will run indefinitely until it is told to stop. The code

uses an event structure to detect if any of the 4 buttons are clicked.

If a button is clicked, the event structure will execute the code contained in the corresponding event. If

one of the program vi’s button is clicked, the code

1. looks for the .vi (program file) in the same directory,

2. uses in invoke node to open the vi,

3. finished activities with the .vi, and checks for errors

4. Then activates a case structure which closes the main screen window.

If a button is clicked, the event structure will execute the code contained in the corresponding event.

Each banner is actually a button with an image used as it’s display state. If one of the banners is clicked,

the code

1. Uses preset website address

2. And opens it in the default web browser

Wheatstone bridge program

The Wheatstone bridge program is designed to graph and analyze the output from a modified SCME

pressure sensor kit pressure sensor.

1. Student’s name – allows the student(s) to sign the report that is generated.

2. Serial port – select the correct COM port from the dropdown menu.

3. Frequency Dial – Use the dial to change the number samples per second (frequency) that the

program will graph.

4. Generate report – export all of the data collected, analyzed and curve fit data to an Excel

document. (requires excel to be installed)

5. Graph – The output of the sensor will be graphed in this area.

6. Most recent sample value on graph in decimal form.

7. Graph Scroll bar – Slide scroll bar to view graph history.

8. Take sample – By clicking any button, the program will store and graph the current value in to

corresponding array.

9. Sample Value – displays the numeric value of each sample.

10. Samples Graph – Displays the 10 collected values on graph

11. Curve fit – Displays a Curve fit to match the collected data values.

12. Return to welcome screen – Closes the current window and opens up the welcome screen

where either kit can be selected

Wheatstone bridge code

The code has several segments that are described below

1. Setup – Contains the code used for initializing the Arduino from the settings provided.

2. Graphing – Calculates and displays the live data

3. Specific samples – Lets the user collect a set of 10 samples

4. Samples graphing – Takes the 10 samples and graphs them

5. Rate adjustment – Allows the user to adjust the rate of which the DAC-DP interface module

collects samples.

6. Curve fit – Graphs a formula based curve that fits the 10 samples collected

7. Data Output – Exports the data to a Microsoft excel document that can be saved or further

analyzed.

8. Return to main screen – Closes the current program and returns to the main screen.

9. Closing code – Performs shutting down code and checks for errors.

1. Setup

1. Serial Port – A drop down selector for the user to choose which installed com port is

designated for the DAC-DP interface module

2. Open LINX Device – Find and check for proper connection to the Arduino (DAC-DP interface

module)

3. Digital write – Turns on the “active” LED that is connected to digital pin 2 on the Arduino.

4. Analog read – Read the current value of analog pin 0 every loop iteration.

2. Graphing

1. Build array – Places the collected data into an array

2. Feedback loop – Adds the previous array onto the end of the of the first current value. This

continues adding each collected value on to the array creating a history of values for the

graph.

3. Invert array – Flips the order that the array is stored at, putting the first value at the

beginning and the new values at the end.

4. Array subset – Takes the value of the second value collected (first is always 0). This assumes

that the first sample is taken at room pressure

5. Subtract - Subtracts the numerical value of the first sample from each sample in the array.

This calibrates the graph so that 0 is room pressure.

6. Graph – Graphs the calibrated array so that the user can observe it.

3. Specific Samples

This segment is repeated for 10 different samples. Which then get sent into an array.

1. Button – If the button is clicked, then change to output value to the true/false selector.

2. Select – If button is clicked, save the current value (true input). If button is not clicked use

the last known value (false input)

3. Feedback loop – Allows the last known value to be sent back to the selector.

4. Samples graphing

1. Build Array – Arranges all of the collected samples into a single array.

2. Array Indicator – Displays the array on the front panel for the user/

3. Create Array – Creates an array of values from 1 to 10 to use for the X values when graphing

the collected samples.

4. Bundle – Combines the X and Y values into one wire for the XY Graph

5. XY Graph – Displays the collected samples on a graph using the collected sample values for

Y and the values of 1-10 for X

5. Rate adjustment

1. Dial – Front panel input for the user to change the value of the number of samples per second

to take.

2. Numeric constant – Because LabVIEW operates in milliseconds the value of the dial must be

divided by 1000.

3. Quotient and Remainder – Divides the value of the dial by 1000 and outputs the integer

quotient which increases as the value of the dial increases.

4. Wait (ms) – Tells the program to wait the number of milliseconds inputted before looping the

program and taking the next reading.

6. Curve fit

1. Convert to dynamic data – Converts the array of collected values into a form a data that the

curve fitting subvi can use

2. Curve fitting – Fits a curve to the collected data points in the array.

3. Waveform Graph – Displays the resulting curve on a graph for the user.

7. Data Output

1. MS office report – Creates an excel document based on a template that places inputted data to

specific locations in the excel document.

2. Button – Tells the MS office report subvi to create a report when the user clicks the button.

3. Data input – Displays the collected data points in a graph and a table.

4. String input – Takes the words that the user inputs and includes it in the excel report.

5. Get date/time in seconds – Gets the current date and time and “timestamps” the report

generated.

6. String constant – Places a title above the graph.

7. String constant – Places a title above the table.

8. Return to Main Screen

1. Vi Path – Identifies the name of the vi to look for in the same directory.

2. Open VI Reference – Prepares the vi to receive commands.

3. Invoke Node – Tells the program to open the vi.

4. Invoke node – Tells the program to automatically run the vi.

5. Close Reference – Finishes activities with the .vi, and checks for errors.

6. Boolean – Enables the wire to activate the next case structure.

7. Case structure – Closes the current vi (program).

9. Closing code

1. Digital write – Turns off the “active” LED connected to digital pin 2 on the Arduino.

2. LINX close – Closes the connection to the Arduino.

3. Simple error handler – Checks for and reports any errors to the user.

Cantilever Beam Program

1. Student’s name – Text input that the program uses as the signature for the report.

2. Serial port – Selects the correct COM port from the dropdown menu that identifies the Arduino.

3. Frequency – Displays the calculated frequency of the analyzed data in hertz.

4. Max pk-pk – Displays the greatest difference in voltage measurement.

5. Analyze Collected Data – Button that tells the program to end the loop collecting data and start

the analysis loop

6. Re-take Data – Erases all of the previous collected and analyzed data and starts re-collecting it.

7. Generate report – Exports all of the data collected, analyzed and curve fit data to an Excel

document.

8. Curve fit – Displays an approximate curve to the dampening rate of the cantilever beam.

9. Cursor management – Displays stats and allows the user to alter the cursor properties.

10. Live Data – The output of the sensor will be displayed on this graph as it is being collected.

11. Captured Data – Displays all of the readings taken, and allows you to select which data to

analyze using the cursors.

12. Analyzed Data- displays the selected data after going through a filter that removes noise.

13. Cursor 0 – click and drag this cursor to select the starting point to analyze the data.

14. Cursor 1 – click and drag this cursor to select the ending point of the data to analyze.

15. Viewing area tools – use these tools to select the viewing area on each of the graphed if

desired.

16. Return to welcome screen – Closes the current window and opens up the welcome screen

where either kit can be selected.

1. Setup – Contains the code used for initializing the Arduino from the settings provided.

2. Collect Data – Collects the sensor data until user clicks “analyze data” button.

3. Misc. – Turns off “active” LED and checks for errors and status.

4. Live graph reset – Erases the live graph’s history

5. Cursor position analysis – Gets the X and Y values of each cursors current location and makes

the cursor box follow the line.

6. Data analysis – Analyzes, graphs, and attempts to filter noise out of the selected data

7. Frequency matching – Determines the frequency of the analyzed waveform

8. Curve Fitting - Calculates and graphs an approximate curve to the dampening rate of the

cantilever beam.

9. Data Output – Exports the data to a Microsoft excel document that can be saved or further

analyzed.

10. Return to main screen – Closes the current program and returns to the main screen.

11. Closing code – Disconnects from the Arduino and checks for errors.

1. Setup

1. Serial Port – A drop down selector for the user to choose which installed com port is

designated for the DAC-DP interface module

2. Error In – Stats the error report service

3. Open LINX Device – Find and check for proper connection to the Arduino (DAC-DP interface

module)

4. Digital write – Turns on the “active” LED that is connected to digital pin 2 on the Arduino.

2. Collect Data

1. Local Variable – Checks if the “return to main screen” button has been pressed.

2. Button – Changes value if the “analyze” button is pressed.

3. Or – If any condition (return, analyze, or Error) is true, then output true.

4. Stop – Stop the loop if receives a true signal.

5. Analog read – Read the current value of analog pin 0 every loop iteration.
6. Graph – Graph the data as it is being collected

7. Loop Frequency – Determines how fast the program is collecting data points (how many sample

per second)

Note – The data wire tunnel leaving the loop is an auto-indexing tunnel. This makes the data “build”

an array of values instead of replacing the previous value.

3. Misc.

1. Local Variable – Checks if the “return to main screen” button has been pressed.

2. Or – If any condition (return, Re-collect data) is true, then output true.

3. Digital write – Turns off the “active” LED connected to digital pin 2 on the Arduino.

4. Or – If any condition (return, Re-collect data, or error) is true, then output true.

5. Stop – Stop the loop if receives a true signal.

4. Live graph reset

1. Array constant – Creates an empty array to replace the live graph array

2. Property node (write mode) – Replaces the current “live Graph” array of data with the array

that is wired to the input

5. Cursor position analysis

1. Reference – Opens a reference to the specific graph that will be used.

2. Property Node – Determines the X position (in seconds) of cursor 0

3. Property Node – Determines the X position (in seconds) of cursor 1

4. Multiply – Multiplies the X value (in seconds) of cursor 0 by the sample collection rate to get the

corresponding sample number.

5. Multiply – Multiplies the X value (in seconds) of cursor 1 by the sample collection rate to get the

corresponding sample number.

6. Subtract – Subtracts the sample number of cursor 0 from the x value of cursor 1 to determine

how many samples will be analyzed

7. Absolute value – Because a negative number of values cannot be analyzed, the absolute value

of the number is determined for the event where cursor 1 is placed behind cursor 0.

8. Array subset – selects the portion of the collected data array starting at the value of cursor 0

and contains the number of samples to be analyzed (length) determined by item 6

9. Divide – Divides the loop rate by 1 to get the number of seconds between each sample (dt)

10. Array to matrix – Converts the collected data array into a matrix for ease of manipulation

11. Get Matrix elements – Gets the Y value of cursor 0 that corresponds the Cursor 0’s X value

12. Get Matrix elements – Gets the Y value of cursor 1 that corresponds the Cursor 1’s X value

13. Numeric indicator – Displays the numeric value of cursor 0 on the front panel

14. Numeric indicator – Displays the numeric value of cursor 0 on the front panel

15. Property node (write mode) – Moves the crosshair of cursor 0 to the Y value that corresponds

to the current X value of cursor 0

16. Property node (write mode) – Moves the crosshair of cursor 1 to the Y value that corresponds

to the current X value of cursor 1

6. Data analysis

1. Array max & min – Determines the values of the maximum and minimum points in the array.

2. Subtract – Subtracts the min value from the max value to get the voltage difference.

3. Numeric indicator – Displays the numeric value the voltage difference on the front panel

4. Build waveform – Builds a waveform using the values between cursor 0 and cursor 1

5. Filter – Uses a Smoothing filter with a half width moving average of 10 to filter out most of the

“noise” That can happen when collecting data.

6. Build waveform – Builds a waveform using all values collected.

7. Waveform Graph – Graphs all of the data collected

7. Frequency Matching

1. Convert from dynamic data – Converts the filtered signal into a waveform

2. Extract single tone information – analyzes and determines the frequency of the waveform

3. Numeric indicator – Displays the numeric value of the waveform’s frequency on the front panel

8. Data Output

1. Button – Tells the MS office report subvi to create a report when the user clicks the button.

2. MS office report – Creates an excel document based on a template that places inputted data to

specific locations in the excel document.

3. String constant – Places a title above the Frequency cell.

4. String constant – Places a title above the graph for all of the collected data.

5. String constant – Places a title above the curve fit graph.

6. Get date/time in seconds – Gets the current date and time and “timestamps” the report

generated.

7. String input – Takes the words that the user inputs and includes it in the excel report.

8. Graph – Graphs the analyzed data on the front panel.

9. Return to main screen

1. Vi Path – Identifies the name of the vi to look for in the same directory.

2. Open VI Reference – Prepares the vi to receive commands.

3. Invoke Node – Tells the program to open the vi.

4. Invoke node – Tells the program to automatically run the vi.

5. Close Reference – Finishes activities with the .vi, and checks for errors.

6. Boolean – Enables the wire to activate the next case structure.

7. Case structure – Uses a vi reference and an invoke node to close the current vi (program).

8. Button – A button that is referenced in many places. If clicked, the button will trigger a value

change in the referenced, signaling to program to return to the main screen and close the

current window.

10. Closing code

1. NOT – If there is no error, then loop.

2. LINX close – Closes the connection to the Arduino.

3. Simple error handler – Checks for and reports any errors to the user.

