Lab Notebook METC-143

08/01/2013

Lab #8 Cantilever Frequency

7/30/13

Hypothesis:

The frequency similar material decreases as the thickness of the material increases.

Equipment:

- Camera
- Tripod
- Card Reader
- 4- Clamps
- Poster Board Strip with horizontal reference lines
- Poster Board strip 24" x 2.375 x .125
- Poster Board strip 24" x 1.25 x .25
- Computer

Procedure:

- Clamp a poster board strip to the table top and position the poster board with horizontal lines parallel
- 2. Set up a video camera on a tripod to capture video of the oscillations of the cantilevered poster board strip.
- 3. Use the captured video count the number of oscillations over a 5 second interval of the video.
- 4. Set up a spreadsheet to determine the frequency of the board.
- 5. Repeat for a similar strip that is thicker.
- 6. Compare the results.

Lab #8 continued

Formula: f=((#oscillations)*(frames/second))/(#frames)

Camana Franco / Canana	20	l a m ath	0 7/10	in ab a a
Camera Frame/ Second=	30	length=	9 7/16	inches
		width=	2 3/8	inches
		thickness:	0.125	inches
Units Added	#Oscilatio	Frames	Frequency	
0	24.5	150	4.90000	Hz
1	19	150	3.80000	Hz
2	16	150	3.20000	Hz
3	15	150	3.00000	Hz
4	12	150	2.40000	Hz
5	11	150	2.20000	Hz
6	9.5	150	1.90000	Hz
7	8.5	150	1.70000	Hz
8	7	150	1.40000	Hz
9	5.5	150	1.10000	Hz
10	4	150	0.80000	Hz

Frequency for Thinner Material

Lab #8 continued

Camera Frame/ Second=	30	length=	9 7/16	inches
		width=	1 1/4	inches
		thickness:	0.250	inches
Units Added	#Oscilatio	Frames	Frequency	
0	19	150	3.80000	Hz
1	15	150	3.00000	Hz
2	14	150	2.80000	Hz
3	13	150	2.60000	Hz
4	12	150	2.40000	Hz
5	11	150	2.20000	Hz
6	10	150	2.00000	Hz
7	9	150	1.80000	Hz
8	8	150	1.60000	Hz
9	7	150	1.40000	Hz
10	6	150	1.20000	Hz

Frequency for Thicker Material

Lab #8 continued

Observations:

While the thicker board was narrower it did not seem to matter

Conclusion:

The thicker the material is the lower the frequency of the cantilever.

Video of Test of Thinner Material without any units added